Продолжаем нашу беседу об ЭД4М. Сегодня мы поговорим о контроллере машиниста. Данный низковольтный аппарат предназначен для дистанционного управления силовой схемой, а точнее - изменением режимов её работы. Контроллер машиниста имеет 5 ходовых, 5 тормозных и нулевое положения. Для начала поговорим о ходовых положениях. В положении "М" происходит сбор схемы тяги. Контур протекания тока в силовой цепи: Токоприёмник ПК- Дроссельный фильтр ДрФ- Главный разъединитель ГрВЦ- БВ - Входная катушка Дифференциального реле ДР- обмотка Дифференцирующего трансформатора ТрД- Линйный контактор ЛК - Контактный элемент реверсивно-тормозного переключателя ТП2 - Пуско-тормозные реостатные элементы R1, R4, R5, R6, R7, R8 - Линейно-тормозной контактор ЛКТ - Якоря Я1-Я2-Я3-Я4 - Датчики тока якоря ДТЯ и ДТЯ1 - Контактный элемент реверсивно-тормозного переключателя ТП6 - Контактный элемент реверсивно-тормозного переключателя В1 - Обмотки возбуждения М1-М2-М3-М4 - Измерительный шунт амперметра А3 - обмотка ТрД - Выходная катушка ДР - Измерительный шунт амперметра А1 - Измерительный шунт счётчика электроэнергии Wh2 - Измерительный шунт счётчика электроэнергии Wh1 - Заземляющее устройство. Собралась схема с полностью введёнными пусковыми реостатами. Для увеличения скорости машинист ставит контроллер в положение 1. Получит питание провод 1, который запитает БРУ - блок регулировки ускорения, и начнётся вывод реостатов. Сделаем краткий экскурс в недра электропоезда. Реостаты выводятся с помощью реостатного контроллера - силового кулачкового аппарата с электропневматическим приводом Решетова. Конструкция его такова - на металлической раме установлен зубчатый редуктор с передаточным числом 1:3,33, который приводится во вращение попеременно запитываемыми электропневматическими вентилями В1 и В2(провода 1Е и 1Д(уточняйте)). На валу с зубчатым колесом установлены кулачки, замыкающие силовые контакторные элементы(см. развёртку на силовой схеме). На противоположном конце установлен такой же редуктор, но без управляющих вентилей - с его помощью замыкаются низковольтные блокировки. Вернёмся к 1-ому положению контроллера. Как уже было сказано, подготовится цепь автоматического пуска. Управление вентилями возложено на БРУ. Через ДТЯ и ДТЯ1, а также уставку с задатчика В400(выбор уставки тока на пульте машиниста), БРУ подаёт питание на провода вентилей. Подача питания происходит, когда ток двигателя становится меньше тока уставки В400(БРУ об этом узнаёт с помощью ДТЯ и ДТЯ1). РК провернулся на 2-ю позицию. Далее процесс повторяется до тех пор, пока не разомкнётся блокировка РК1-13(иными словами, процесс автопуска завершится при достижении 14-ой позиции). Все реостаты выведены, двигатели работают на полном возбуждении. Для дальнейшего увеличения скорости предусмотрено ослабление возбуждения двигателей. Положение 2. В низковольтной схеме встанет под питание провод 3 - получит питание катушка контактора Ш. Создастся цепь, параллельная обмоткам возбуждения ТЭД по контуру: ИШ(индуктивный шунт) - реостатные элементы R10,24,11,12,13,14,15 - измерительный шунт амперметра А2 - далее как при положениях М,1. РК провернётся на 15 и 16-ю позицию, после чего остановится, так как питание на провода 5 и 6 ещё не поступало. Электропоезд следует с ослабленным возбуждением 43,4%. Положение 3. Аналогично положению 2 с той лишь разницей, что РК провернётся на 17 и 18-ю позиции(получил питание провод 5), ослабление возбуждения 28,1%. Положение 4. РК проворачивается на 19 и 20-ю позиции(получил питание провод 6), достигнуто минимально возможное ослабление возбуждения в 18,5%. Автопуск завершён. Разбор схемы тяги происходит ступенчато. При последовательном возврате рукоятки контроллера из 4 в 3, из 3 в 2, из 2 в 1, из 1 в М будут терять питание провода, 6,5,3,1 соответственно. При постановке в 0 сначала отключатся ЛК и ЛКТ, а затем РК вернётся на первую позицию. Задержка разбора схемы обеспечивается контакторами КВХ и КВТ(контакторы выдержки времени хода и тормоза соответственно), а точнее конденсаторами, поставленными в параллель КВТ и КВХ. Электропоезд снова готов к автоматическому пуску. В следующий раз разберём электродинамическое торможение. Если кто-то из читающих найдёт ошибки в тексте, то убедительно прошу в следующих постах свои замечания выдать на всеобщее обозрение. Ну и мне написать о косяках. Спасибо за понимание). И совсем напоследок - многие из вас, осваивая ЭД4М, столкнулись с таким моментом - при постановке контроллера машиниста в положение 1 из М сила тяги резко увеличивалась до огромных значений, что даже индикатор комфорта желтел или краснел. Дело в том, что в программном коде сейчас не реализована работа БРУ, БУТ и другой электроники, коей напичкана машина. Поэтому для комфортной езды наших пассажиров нам понадобятся прямые руки, растущие из плеч. Разгоняемся следующим образом: М(на 1-2 секунды)-1(выдержка 0,5 секунды)-М(на 1-2 секунды)-1(выдержка 0,5 секунды)-М-1. Аналогично с положениями 2,3,4. Ну и забегу чуть вперёд расскажу о ЭДТ. Ранее я уже приводил алгоритмы торможения, но для упрощения жизни пользователей и новичков, напишу их здесь. Итак, 1) - торможение с максимальной скорости(120 км/ч) до 40 км/ч - рекуперативное, реостатное или рекуперативно-реостатное торможение с независимым возбуждением). Здесь ставим контроллер в положения 1Т или 2Т, но при скорости выше 70 км/ч 2Т рекомендую не ставить по указанным выше причинам. 2) - Реостатное торможение с самовозбуждением. С 40 км/ч до 15 км/ч. Здесь можно пользоваться положениями 2Т и 3Т. 3) - Дотормаживание ЭПТ. Электропоезд сам произведёт дотормаживание. В реальности это случится в положения 2Т,3Т, 4Т(принудительно запитывает провод 40Я, возбуждая вентили торможения ЭВР прицепных вагонов) и 5Т(если есть реальная угроза пролёта платформы - при нормальном течении процесса ЭДТ в 5Т лучше не залезать). А мы при скорости 15 км/ч кратковременено толкнём контроллер в положение 4Т на 0,5 секунды и вернём в 3Т. Наслаждаемся точной остановкой у платформы).